Lead the technical strategy and architectural evolution of Bumble’s ML recommendation and content understanding systems.
Partner with engineering and product leaders to align long-term ML platform investments with business priorities and member impact.
Design and guide the development of scalable pipelines and serving systems that support pre-trained, fine-tuned, and in-house models at high throughput.
Define and champion best practices for reliability, observability, and retraining across the ML lifecycle.
Collaborate with ML Scientists to bring cutting-edge research into production, improving model performance and iteration velocity.
Mentor and support other Machine Learning Engineers and Scientists, helping raise the bar for engineering excellence and technical decision-making.
Drive cross-functional technical initiatives across Recommendations, Platform, and other product areas.
Diagnose and resolve complex production challenges across data, infrastructure, and model systems, ensuring the long-term health and scalability of our ML ecosystem.
Represent Bumble’s ML engineering practices internally (through guilds, design reviews, and architecture councils) and externally (through talks, publications, or open-source contributions).
Requirements
Typically 8+ years of professional experience building and operating machine learning systems.
An advanced degree in Computer Science, Mathematics or a similar quantitative discipline.
Strong software engineering background. You write clean, scalable, and maintainable code in Python or similar languages.
Deep expertise in building, deploying, and scaling production ML systems at large scale.
Proven ability to define and lead technical strategy or architecture for complex, distributed ML platforms or pipelines.
Experience with production-grade ML frameworks (e.g. PyTorch, TensorFlow) and orchestration tools (e.g. Airflow, Kubeflow, Ray, or SageMaker).
Proficiency with cloud-native environments and containerised workloads (e.g. Docker, Kubernetes, GCP/AWS).
Deep understanding of MLOps, observability, and model lifecycle management.
Track record of mentoring engineers and influencing engineering practices across teams.
Excellent communicator who can translate between technical detail and business impact.
Passionate about responsible ML — fairness, transparency, and reliability in real-world systems.
Benefits
Medical, Dental, Vision, 401(k) match, Unlimited Paid Time Off Policy.
Maven Fertility: $10,000 lifetime benefit for fertility, adoption, abortion care, and more.
26 Weeks Parental Leave: For both primary and secondary caregivers.
Family & Compassionate Leave: Inclusive of domestic violence recovery.
Unlimited Paid Time Off: Take the time you need.
Company-wide Week Off: Annual collective rest for the entire company.
Focus Fridays: No meetings, emails, or deadlines—just deep work.
Senior Machine Learning Engineer developing real - time learning systems for Quandri's AI - driven insurance platform. Collaborating with various stakeholders to deliver data - driven insights and analytics.
Senior MLOps Architect driving innovations in automotive damage management at ControlExpert. Develops ML lifecycles and optimizes production environments using advanced AI technologies.
Machine Learning Engineer designing and implementing AI systems for Defense and Intelligence sectors. Enhancing data accessibility and optimizing operational capabilities through ML solutions.
Innovation Engineer responsible for AI - driven solutions at a digital commerce company. Focused on prototyping, exploring technologies, and shaping technology strategy.
Senior ML Engineer developing scalable machine learning systems for FOX advertising platform. Collaborating on ML solutions that optimize ad personalization and monetization.
Senior AI/ML Engineer developing machine learning tools for quantum error correction at Riverlane. Collaborating with researchers to deliver innovative AI solutions in quantum computing.
Applied Machine Learning Scientist validating Generative AI models for TD. Responsible for model validation and communicating findings to stakeholders while fostering collaborations.
Senior Software Engineer developing machine learning geospatial products for Planet. Collaborating with engineers and scientists on innovative remote sensing analytics.
Machine Learning Engineer responsible for optimizing AI pipelines at Easy2Parts. Join a growing team to revolutionize component sourcing with AI technology.
AI/ML Engineer developing and deploying machine learning solutions for Nokia's network optimization projects. Collaborating with cross - functional teams to enhance network planning capabilities.