Machine Learning Engineer at Capital One focusing on building and optimizing ML applications. Collaborating in Agile teams and applying latest innovations in machine learning engineering.
Responsibilities
As a Capital One Machine Learning Engineer (MLE), you'll be part of an Agile team dedicated to productionizing machine learning applications and systems at scale.
Participate in the detailed technical design, development, and implementation of machine learning applications using existing and emerging technology platforms.
Focus on machine learning architectural design, develop and review model and application code, and ensure high availability and performance of our machine learning applications.
Continuously learn and apply the latest innovations and best practices in machine learning engineering.
The MLE role overlaps with many disciplines, such as Ops, Modeling, and Data Engineering.
Perform many ML engineering activities, including one or more of the following: Design, build, and/or deliver ML models and components that solve real-world business problems, while working in collaboration with the Product and Data Science teams.
Inform your ML infrastructure decisions using your understanding of ML modeling techniques and issues, including choice of model, data, and feature selection, model training, hyperparameter tuning, dimensionality, bias/variance, and validation).
Solve complex problems by writing and testing application code, developing and validating ML models, and automating tests and deployment.
Collaborate as part of a cross-functional Agile team to create and enhance software that enables state-of-the-art big data and ML applications.
Retrain, maintain, and monitor models in production.
Leverage or build cloud-based architectures, technologies, and/or platforms to deliver optimized ML models at scale.
Construct optimized data pipelines to feed ML models.
Leverage continuous integration and continuous deployment best practices, including test automation and monitoring, to ensure successful deployment of ML models and application code.
Ensure all code is well-managed to reduce vulnerabilities, models are well-governed from a risk perspective, and the ML follows best practices in Responsible and Explainable AI.
Use programming languages like Python, Scala, or Java.
Requirements
Bachelor’s degree
At least 8 years of experience designing and building data-intensive solutions using distributed computing (Internship experience does not apply)
At least 4 years of experience programming with Python, Scala, or Java
At least 3 years of experience building, scaling, and optimizing ML systems
At least 2 years of experience leading teams developing ML solutions
Master's or doctoral degree in computer science, electrical engineering, mathematics, or a similar field (Preferred)
Experience developing and deploying ML solutions in a public cloud such as AWS, Azure, or Google Cloud Platform (Preferred)
4+ years of on-the-job experience with an industry recognized ML framework such as scikit-learn, PyTorch, Dask, Spark, or TensorFlow (Preferred)
3+ years of experience developing performant, resilient, and maintainable code (Preferred)
3+ years of experience with data gathering and preparation for ML models (Preferred)
3+ years of people management experience (Preferred)
ML industry impact through conference presentations, papers, blog posts, open source contributions, or patents (Preferred)
3+ years of experience building production-ready data pipelines that feed ML models (Preferred)
Ability to communicate complex technical concepts clearly to a variety of audiences (Preferred).
Benefits
Capital One offers a comprehensive, competitive, and inclusive set of health, financial and other benefits that support your total well-being.
Senior Software Developer working on ML Infrastructure and Deployment at Verafin. Helping develop cutting - edge fraud detection tools alongside analytics teams using AWS and Terraform.
Machine Learning Engineer developing advanced SLAM systems for autonomous trucking environments at Bot Auto. Collaborating with cross - functional teams to optimize mapping solutions and ensure operational stability.
Graduate Deep Learning Algorithm Developer developing perception technologies for autonomous driving. Tackling challenges in object detection and 3D perception using state - of - the - art deep learning models.
Principal AI/ML Engineer leading the AI/ML infrastructure development for WEX's risk service needs. Focused on innovative engineering and technology solutions within a high - stakes environment.
AI/ML Engineer developing solutions in artificial intelligence for HPE. Responsible for conducting research, designing AI solutions, and mentoring team members.
Machine Learning Engineer focusing on modeling cancer cells and developing related tools. Collaborating with researchers and scientists to advance cancer treatment through ML.
Machine Learning Engineer II developing production - grade ML models for fraud detection at GEICO. Collaborating on system architecture and ensuring optimal performance of fraud assessment systems.
AI/ML Engineer III designing and architecting AI solutions at Hewlett Packard Enterprise. Collaborating with teams to drive innovation and tackle complex problems.
AI/ML Engineer deploying state - of - the - art AI models to solve real - world problems at Brain Co. Working in healthcare, government, and energy sectors for impactful results.
Trainer at WeAndTheMany facilitating learning by sharing experiences and creating interactive sessions. Engaging with students to enhance their skills and knowledge through dynamic teaching methods.